The Effects of Hyperglycemia on Early Endothelial Activation and the Initiation of Atherosclerosis Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • It is well established that patients with diabetes have an increased risk of developing atherosclerotic cardiovascular disease. The earliest detectable sign of atherosclerosis initiation is endothelial cell activation. Activated endothelial cells express adhesion proteins, P-selectin, E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1, which function to recruit monocytes to the subendothelial layer. This study examines the effect of hyperglycemia on endothelial cell activation and the initiation and progression of atherosclerosis. In vitro studies revealed that exposure of human aortic endothelial cells to elevated (30 mmol/L) glucose concentrations significantly increased the expression of P-selectin, E-selectin, and vascular cell adhesion molecule-1. In vivo studies showed that, before lesion development, 5-week-old hyperglycemic ApoE-/-Ins2+/akita mice had significantly increased expression of these adhesion proteins in the aortic sinus and increased macrophage infiltration, compared with normoglycemic ApoE-/- controls. At 25 weeks of age, ApoE-/-Ins2+/akita mice had significantly larger atherosclerotic plaques than ApoE-/- controls (0.022 ± 0.004 versus 0.007± 0.001 mm3; P < 0.05). Similar endothelial activation was observed in heterozygous ApoE+/-Ins2+/akita mice; however, detectable atherosclerotic lesions did not develop in the absence of dyslipidemia. Lowering blood glucose levels (by 55%) using a sodium-glucose cotransporter 2 inhibitor reduced endothelial activation. Together, these findings support a causative role for hyperglycemia in atherogenesis and highlight the importance of blood glucose regulation in preventing atherosclerotic cardiovascular disease.

authors

  • Mastrogiacomo, Lauren
  • Ballagh, Robert
  • Venegas-Pino, Daniel E
  • Kaur, Hargun
  • Shi, Peter
  • Werstuck, Geoff

publication date

  • January 2023