abstract
- An important question in oculomanual control is whether motor planning and execution modulate interference between motion of the eyes and hands. Here we investigated oculomanual interference using a novel paradigm that required saccadic eye movements and unimanual finger tapping. We examined finger trajectories for spatial interference caused by concurrent saccades. The first experiment used synchronous cues so that saccades and taps shared a common timekeeping goal. We found that finger trajectories showed bilateral interference where either finger was attracted in the direction of the accompanying saccade. The second experiment avoided interference due to shared planning resources by examining interference caused by reactive saccades. Here, we observed a lesser degree of execution-dependent coupling where the finger trajectory deviated only when reactive saccades were directed toward the hemifield of the responding hand. Our results show that distinct forms of eye-to-hand coupling emerge according to the demands of the task.