The roles of V-type H + -ATPase and Na + /K + -ATPase in energizing K + and H + transport in larval Drosophila gut epithelia Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We analyzed V-type H+-ATPase (VA) and Na+/K+-ATPase (NKA) along the caeca and midgut of third instar Drosophila larvae using immunohistochemistry and ATPase activity assays. Corresponding H+ and K+ fluxes were characterized using the Scanning Ion-Selective Electrode Technique (SIET), and the roles of transport ATPases in energizing ion transport across the larval gut were investigated by basal application of bafilomycin, a VA inhibitor, and ouabain, a NKA inhibitor. Addition of bafilomycin led to a decrease in H+ absorption along the caeca and midgut except at the copper cells and large flat cell zone of the middle midgut. H+ absorption was decreased by acetazolamide, consistent with carbonic anhydrase activity in all regions except at the large flat cell zone of the middle midgut. Bafilomycin or acetazolamide also led to decreased K+ absorption across the caeca and the anterior midgut. Our data show the dependence of K+ transport on H+ gradients established by the VA in the latter regions, consistent with the presence of a Cation-Proton Antiporter (CPA2) identified in other insect epithelia. Addition of ouabain led to the increase of K+ absorption along the anterior midgut and the large flat cell zone of the middle midgut, suggesting a role for the NKA in these regions. This study shows the importance of both ATPases in driving ion transport across the gut of larval Drosophila.

publication date

  • April 2017