Establishment and characterization of hamster cell lines transformed by restriction endonuclease fragments of adenovirus 5 Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We have established a library of hamster cells transformed by adenovirus 5 DNA fragments comprising all (XhoI-C, 0 to 16 map units) or only a part (HindIII-G, 0 to 7.8 map units) of early region 1 (E1: 0 to 11.2 map units). These lines have been analyzed in terms of content of viral DNA, expression of E1 antigens, and capacity to induce tumors in hamsters. All cells tested were found to express up to eight proteins encoded within E1A (0 to 4.5 map units) with apparent molecular weights between 52,000 (52K) and 25K. Both G and C fragment-transformed lines expressed a 19K antigen encoded within E1B (4.5 to 11.2 map units), whereas an E1B 58K protein was detected in C fragment-transformed, but not G-fragment-transformed, lines. No clear distinction could be drawn between cells transformed by HindIII-G and by XhoI-C in terms of morphology or tumorigenicity, suggesting that the E1B 58K antigen plays no major role in the maintenance of oncogenic transformation, although possible involvement of truncated forms of 58K cannot be ruled out. Sera were collected from tumor-bearing animals and examined for ability to immunoprecipitate proteins from infected cells. The relative avidity of sera for different proteins was characteristic of the cell line used for tumor induction, and the specificity generally reflected the array of viral proteins expressed by the corresponding transformed cells. However, one notable observation was that even though all transformed lines examined expressed antigens encoded by both the 1.1- and 0.9-kilobase mRNAs transcribed from E1A, tumor sera made against these lines only precipitated products of the 1.1-kilobase message. Thus, two families of E1A proteins, highly related in terms of primary amino acid sequence, appear to be immunologically quite distinct.

publication date

  • January 1984