Spatial and temporal variations of halogenated flame retardants and organophosphate esters in landfill air: Potential linkages with gull exposure
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Landfills represent important sources of local emissions of organic contaminants, including halogenated (HFR) and organophosphate ester (OPE) flame retardants used in a large variety of consumer products. Gulls foraging in landfills may be exposed to elevated atmospheric concentrations of HFRs and OPEs that may vary spatially and temporally within a landfill site, thus modulating their exposure. The objective of the present study was to investigate the spatial and temporal variability of HFR and OPE concentrations in air samples collected from a major landfill in the Montreal area (QC, Canada) that is frequently visited by gulls for foraging. Miniature stationary passive air samplers (PASs) and high-volume active air samplers (AASs) were deployed in six different areas within this landfill site for 34 days to collect HFRs and OPEs in air. During the same period, wild-caught ring-billed gulls (Larus delawarensis) were equipped on their back with a similar miniature PAS that was deployed in the landfill along with a GPS datalogger to monitor their movements for ten days. Elevated concentrations of certain OPEs (e.g., tris(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate) and brominated diphenyl ether (BDE)-209 were measured in stationary PASs and AASs, although they were homogenously distributed within this landfill site. Temporal variability was observed for concentrations of BDE-209, -99 and -47 measured in AASs as well as tributyl phosphate during the 34-day deployment period. Moreover, air concentrations of BDE-209, -207 and -206 and selected OPEs (tris(1,3-dichloro-2-propyl) phosphate and tris(methylphenyl) phosphate) determined using AASs were positively correlated with ambient air temperatures. Gulls that visited a landfill at least once exhibited significantly greater concentrations of BDE-47 measured in PASs they carried on their back, suggesting that landfill air may represent a source of exposure to PBDEs for these birds, and potentially other urban-adapted wildlife using these sites for foraging.