The Nup107-160 complex and γ-TuRC regulate microtubule polymerization at kinetochores Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The metazoan nuclear pore complex (NPC) disassembles during mitosis, and many of its constituents distribute onto spindles and kinetochores, including the Nup107-160 sub-complex. We have found that Nup107-160 interacts with the gamma-tubulin ring complex (gamma-TuRC), an essential and conserved microtubule nucleator, and recruits gamma-TuRC to unattached kinetochores. The unattached kinetochores nucleate microtubules in a manner that is regulated by Ran GTPase; such microtubules contribute to the formation of kinetochore fibres (k-fibres), microtubule bundles connecting kinetochores to spindle poles. Our data indicate that Nup107-160 and gamma-TuRC act cooperatively to promote spindle assembly through microtubule nucleation at kinetochores: HeLa cells lacking Nup107-160 or gamma-TuRC were profoundly deficient in kinetochore-associated microtubule nucleation. Moreover, co-precipitated Nup107-160- gamma-TuRC complexes nucleated microtubule formation in assays using purified tubulin. Although Ran did not regulate microtubule nucleation by gamma-TuRC alone, Nup107-160-gamma-TuRC complexes required Ran-GTP for microtubule nucleation. Collectively, our observations show that Nup107-160 promotes spindle assembly through Ran-GTP-regulated nucleation of microtubules by gamma-TuRC at kinetochores, and reveal a relationship between nucleoporins and the microtubule cytoskeleton.

authors

  • Mishra, Ram
  • Chakraborty, Papia
  • Arnaoutov, Alexei
  • Fontoura, Beatriz MA
  • Dasso, Mary

publication date

  • February 2010