The effect of spatial frequency on perceptual learning of inverted faces Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We investigated the efficacy of training adults to recognize full spectrum inverted faces presented with different viewpoints. To examine the role of different spatial frequencies in any learning, we also used high-pass filtered faces that preserved featural information and low-pass filtered faces that severely reduced that featural information. Although all groups got faster over the 2 days of training, there was more improvement in accuracy for the group exposed to full spectrum faces than in the two groups exposed to filtered faces, both of which improved more modestly and only when the same faces were shown on the 2 days of training. For the group exposed to the full spectrum range and, to a lesser extent, for those exposed to high frequency faces, training generalized to a new set of full spectrum faces of a different size in a different task, but did not lead to evidence of holistic processing or improved sensitivity to feature shape or spacing in inverted faces. Overall these results demonstrate that only 2h of practice in recognizing full-spectrum inverted faces presented from multiple points of view is sufficient to improve recognition of the trained faces and to generalize to novel instances. Perceptual learning also occurred for low and high frequency faces but to a smaller extent.

publication date

  • June 2013