Home
Scholarly Works
Huntingtin structure is orchestrated by HAP40 and...
Journal article

Huntingtin structure is orchestrated by HAP40 and shows a polyglutamine expansion-specific interaction with exon 1

Abstract

Huntington’s disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington’s disease and illuminate the structural consequences of HTT polyglutamine expansion.

Authors

Harding RJ; Deme JC; Hevler JF; Tamara S; Lemak A; Cantle JP; Szewczyk MM; Begeja N; Goss S; Zuo X

Journal

Communications Biology, Vol. 4, No. 1,

Publisher

Springer Nature

Publication Date

December 1, 2021

DOI

10.1038/s42003-021-02895-4

ISSN

2399-3642

Contact the Experts team