Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus Journal Articles uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • For decades, the extraction of minerals has intensified in order to meet the demand of industry. Iron ore deposits are important sources of metals, such as iron (Fe) and manganese (Mn). The particulate ores can be dispersed during extraction, transport and storage, with potential to induce biological impacts. Amphibians are very sensitive to environmental stressors. Therefore, the present study aimed to assess the effects of iron ore, Fe and Mn exposure during the metamorphosis of Lithobates catesbeianus. Endpoints analyzed included morphological (biometrical and developmental analyses), whole body Fe and Mn concentration in, plasma ferritin concentration, erythrocyte DNA damage (measured through comet assay and micronucleus test) and liver activity of enzymes involved in oxidative status [glutathione S-transferase (GST) and catalase (CAT)]. Tadpoles were kept under control condition (no contaminant addition) or exposed to iron ore (3.79mg/L as fine particulate matter); Fe (nominal concentration: 0.51mg/L Fe as C10H12FeN2NaO8; Fe-EDTA); and Mn (nominal concentration: 5.23mg/L Mn as 4H2O.MnCl2) for 30 days. Virtually, no mortality was observed, except for one tadpole found dead in the iron ore treatment. However, tadpoles exposed to iron ore had longer tail than those kept under control conditions while tadpoles exposed to manganese chloride showed higher body length than control ones. Exposure to Fe and Mn induced a delay in tadpole metamorphosis, especially when these metals are presented not as a mixture (iron ore). Tadpoles exposed to iron ore had increased whole body Fe and Mn while those exposed to Fe and Mn accumulated each metal individually. Tadpoles exposed to any of the contaminants tested showed a significant increase in erythrocyte DNA damage and frequency of micronuclei. In addition, they showed higher liver GST activity respect with those kept under control conditions. Plasma ferritin concentration and liver CAT activity were higher only in tadpoles exposed to iron ore. These findings indicated that tadpoles accumulated Fe and Mn at the whole body level after exposure to the single metals or to their mixture as iron ore. In addition, they indicate that Fe and Mn accumulation can induce oxidative stress with consequent significant developmental, genotoxic and biochemical effects in L. catesbeianus tadpoles.


  • Veronez, Alexandra Caroline da Silva
  • Salla, Rômulo Victor
  • Baroni, Vinícius Dadalto
  • Barcarolli, Indianara Fernanda
  • Bianchini, Adalto
  • dos Reis Martinez, Claudia Bueno
  • Chippari-Gomes, Adriana Regina

publication date

  • May 2016