Development of Cell-Based Tuberculosis Vaccines: Genetically Modified Dendritic Cell Vaccine Is a Much More Potent Activator of CD4 and CD8 T Cells Than Peptide- or Protein-Loaded Counterparts Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Genetically modified dendritic cell (DC)-based vaccines have not been explored for immunization against tuberculosis. A gene-modified DC vaccine expressing Mycobacterium tuberculosis (M.tb) antigen 85A (Ag85A) was developed by using a recombinant replication-deficient adenoviral gene transfer vector (AdAg85A). AdAg85A-transduced DC vaccine (AdAg85/DC) expressed higher levels of IL-12 and was much more immunogenic than Ag85 protein-loaded (pro/DC) or CD4/CD8 T cell peptide-loaded (pep/DC) DC vaccines. Compared to pro/DC or pep/DC, AdAg85/DC elicited a remarkably higher level of ex vivo IFN-gamma production by CD4 and CD8 T cells at weeks 2, 6, and 12 postimmunization, which was coupled with higher frequencies of antigen-specific T cells. By an in vivo CD8 or CD4 T cell cytotoxicity (CTL) assay, AdAg85/DC was shown to provoke much higher and more sustained levels of CD8 and CD4 CTL activity up to 12 weeks postimmunization. Intramuscular (im) AdAg85/DC immunization was more potent than the iv route of AdAg85/DC immunization. Such stronger immunogenicity of im AdAg85/DC vaccination was corroborated with better protection from M.tb challenge. Our results thus suggest that genetically modified DC-based TB vaccine is superior to subunit DC vaccines and has the potential for therapeutic applications.

publication date

  • April 2006

has subject area