“AI’s gonna have an impact on everything in society, so it has to have an impact on public health”: a fundamental qualitative descriptive study of the implications of artificial intelligence for public health Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract Background Our objective was to determine the impacts of artificial intelligence (AI) on public health practice. Methods We used a fundamental qualitative descriptive study design, enrolling 15 experts in public health and AI from June 2018 until July 2019 who worked in North America and Asia. We conducted in-depth semi-structured interviews, iteratively coded the resulting transcripts, and analyzed the results thematically. Results We developed 137 codes, from which nine themes emerged. The themes included opportunities such as leveraging big data and improving interventions; barriers to adoption such as confusion regarding AI’s applicability, limited capacity, and poor data quality; and risks such as propagation of bias, exacerbation of inequity, hype, and poor regulation. Conclusions Experts are cautiously optimistic about AI’s impacts on public health practice, particularly for improving disease surveillance. However, they perceived substantial barriers, such as a lack of available expertise, and risks, including inadequate regulation. Therefore, investment and research into AI for public health practice would likely be beneficial. However, increased access to high-quality data, research and education regarding the limitations of AI, and development of rigorous regulation are necessary to realize these benefits.

authors

  • Morgenstern, Jason D
  • Rosella, Laura C
  • Daley, Mark J
  • Goel, Vivek
  • Schunemann, Holger
  • Piggott, Thomas

publication date

  • December 2021