Journal article
A Single Bout of High-intensity Interval Exercise Increases Corticospinal Excitability, Brain-derived Neurotrophic Factor, and Uncarboxylated Osteolcalcin in Sedentary, Healthy Males
Abstract
Exercise induces neuroplasticity in descending motor pathways facilitating motor learning, and as such it could be utilized as an intervention in neurorehabilitation, for example when re-learning motor skills after stroke. To date, however, the neurophysiological and molecular mechanisms underlying exercise-induced neuroplasticity remain largely unknown impeding the potential utilization of exercise protocols as 'motor learning boosters' in …
Authors
Nicolini C; Michalski B; Toepp SL; Turco CV; D'Hoine T; Harasym D; Gibala MJ; Fahnestock M; Nelson AJ
Journal
Neuroscience, Vol. 437, , pp. 242–255
Publisher
Elsevier
Publication Date
June 2020
DOI
10.1016/j.neuroscience.2020.03.042
ISSN
0306-4522