Ara h 1 Peptide Immunotherapy Ameliorates Peanut-Induced Anaphylaxis Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Background: Despite the clinical severity and rising prevalence of peanut allergy, there is a marked absence of widespread, practical treatments available for peanut-allergic patients. Peptide immunotherapy, a disease-modifying treatment that uses short peptides recognized by T cells, has been shown to reduce allergic symptoms of allergic rhinoconjunctivitis. This project investigated the ability of peptides from the major peanut allergen Ara h 1 to protect against peanut-induced anaphylaxis and induce immunomodulatory changes in a mouse model. Methods: Mice transgenic for the human leukocyte antigen DRB1*0401 were sensitized to peanut epicutaneously and treated with two intraperitoneal injections of peptides from Ara h 1. Mice were then challenged with intraperitoneal whole peanut and observed for signs of anaphylaxis. Flow cytometry was used to isolate peanut-specific CD4+ T cells labelled with Ara h 1 peptide-loaded tetramers and additional Th1, Th2, and regulatory markers. Results: Peptide-treated mice were protected from severe peanut-induced anaphylaxis. Control mice treated with a sham peptide experienced a mean maximum temperature drop of 3.2°C, while mice treated with Ara h 1 peptides experienced a drop of 1.6°C (p=0.067 vs control). Maximum clinical score was 2.5 in control mice, and 1.4 in treated mice (p=0.0097). Mean hematocrit for control mice was 52.5%, and 47% for treated mice (p=0.013). PD-1+CD4+ T cells were significantly increased in the mesenteric lymph nodes (p = 2.28e-0.05) and spleens (p = 0.014) of peptide-treated mice. MIP1-a+CD4+ T cells were significantly decreased in the peritoneal lavage (p = 0.008). Conclusion: Ara h 1 peptide immunotherapy protected against severe peanut-induced anaphylaxis in a mouse model. Peptide-treated mice experienced significantly reduced drops in core body temperature, clinical signs of allergic reaction, and hemoconcentration. Clinical protection was associated with decreased expression of the pro-inflammatory chemokine macrophage 1-a and increased expression of the surface marker programmed cell death protein 1.

authors

  • Simms, Elizabeth
  • Rudulier, Christopher
  • Wattie, Jennifer
  • Kwok, William W
  • James, Eddie A
  • Moldaver, Daniel M
  • Jordana, Manel
  • Larche, Mark

publication date

  • February 2015