Generation and Characterization of B7-H4/B7S1/B7x-Deficient Mice Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Members of the B7 family of cosignaling molecules regulate T-cell proliferation and effector functions by engaging cognate receptors on T cells. In vitro and in vivo blockade experiments indicated that B7-H4 (also known as B7S1 or B7x) inhibits proliferation, cytokine production, and cytotoxicity of T cells. B7-H4 binds to an unknown receptor(s) that is expressed on activated T cells. However, whether B7-H4 plays nonredundant immune regulatory roles in vivo has not been tested. We generated B7-H4-deficient mice to investigate the roles of B7-H4 during various immune reactions. Consistent with its inhibitory function in vitro, B7-H4-deficient mice mounted mildly augmented T-helper 1 (Th1) responses and displayed slightly lowered parasite burdens upon Leishmania major infection compared to the wild-type mice. However, the lack of B7-H4 did not affect hypersensitive inflammatory responses in the airway or skin that are induced by either Th1 or Th2 cells. Likewise, B7-H4-deficient mice developed normal cytotoxic T-lymphocyte reactions against viral infection. Thus, B7-H4 plays a negative regulatory role in vivo but the impact of B7-H4 deficiency is minimal. These results suggest that B7-H4 is one of multiple negative cosignaling molecules that collectively provide a fine-tuning mechanism for T-cell-mediated immune responses.

authors

  • Suh, Woong-Kyung
  • Wang, Seng
  • Duncan, Gordon S
  • Miyazaki, Yoshiyuki
  • Cates, Elizabeth
  • Walker, Tina
  • Gajewska, Beata U
  • Deenick, Elissa
  • Dawicki, Wojciech
  • Okada, Hitoshi
  • Wakeham, Andrew
  • Itie, Annick
  • Watts, Tania H
  • Ohashi, Pamela S
  • Jordana, Manel
  • Yoshida, Hiroki
  • Mak, Tak W

publication date

  • September 1, 2006

has subject area