Fluoroquinolone Resistance in Clinical Isolates of Streptococcus pneumoniae : Contributions of Type II Topoisomerase Mutations and Efflux to Levels of Resistance Academic Article uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • ABSTRACT We report on amino acid substitutions in the quinolone resistance-determining region of type II topisomerases and the prevalence of reserpine-inhibited efflux for 70 clinical isolates of S. pneumoniae for which the ciprofloxacin MIC is ≥4 μg/ml and 28 isolates for which the ciprofloxacin MIC is ≤2 μg/ml. The amino acid substitutions in ParC conferring low-level resistance (MICs, 4 to 8 μg/ml) included Phe, Tyr, and Ala for Ser-79; Asn, Ala, Gly, Tyr, and Val for Asp-83; Asn for Asp-78; and Pro for Ala-115. Isolates with intermediate-level (MICs, 16 to 32 μg/ml) and high-level (MICs, 64 μg/ml) resistance harbored substitutions of Phe and Tyr for Ser-79 or Asn and Ala for Asp-83 in ParC and an additional substitution in GyrA which included either Glu-85-Lys (Gly) or Ser-81-Phe (Tyr). Glu-85-Lys was found exclusively in isolates with high-level resistance. Efflux contributed primarily to low-level resistance in isolates with or without an amino acid substitution in ParC. The impact of amino acid substitutions in ParE was minimal, and no substitutions in GyrB were identified.


  • Bast, Darrin J
  • Low, Donald E
  • Duncan, Carla L
  • Kilburn, Laurie
  • Mandell, Lionel
  • Davidson, Ross J
  • de Azavedo, Joyce CS

publication date

  • November 2000

has subject area