CYP3C gene regulation by the aryl hydrocarbon and estrogen receptors in zebrafish Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Cytochrome P450 (CYPs) enzymes are critical for the metabolism of exogenous and endogenous compounds. In mammals, the CYP3s are arguably the most important xenobiotic metabolizing enzymes and are all contained within the CYP3A subfamily. In fish, CYP3s include CYP3A and multiple subfamilies unique to the teleost lineage. The goal of this study was to provide insight on the regulation of genes in the CYP3C subfamily. Zebrafish, which have 4 CYP3C genes, were exposed to 17β-estradiol (E2; 0.001-10 μM) or β-naphthoflavone (βNF; 0.005-1 μM), prototypical ligands of the estrogen receptor (ER) and the aryl hydrocarbon receptor (AhR), respectively. Gene expression was measured in the liver, intestine and gonads using quantitative PCR. CYP1A and vitellogenin (VTG) gene expression were used as positive controls for AhR and ER regulation, respectively. Exposure to βNF resulted in the dose-dependant induction of CYP1A and CYP3C genes in the female intestine but not in the liver. E2 exposure resulted in the induction of all CYP3Cs in the male intestine and in the female liver. VTG was induced in both female and male livers. CYP3C3 and CYP3C4 were induced in the testis; CYP3C1 and CYP3C4 were slightly induced in the ovary. The time-course of gene induction was investigated in the liver and intestine after exposure to βNF (0.5 μM) and E2 (0.1 μM). Inducible genes were up-regulated within 12 h after exposure. These data support a role for the AhR and ER in the regulation of CYP3Cs. Overall, the induction of CYP3Cs by AhR and ER ligands is different from mammalian CYP3A and may suggest a functional role for CYP3Cs that involves planar aromatic hydrocarbons and steroids.

publication date

  • January 2019