Age-Related Resistance in Arabidopsis Is a Developmentally Regulated Defense Response to Pseudomonas syringae Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Age-related resistance (ARR) has been observed in a number of plant species; however, little is known about the biochemical or molecular mechanisms involved in this response. Arabidopsis becomes more resistant, or less susceptible, to virulent Pseudomonas syringae (pv tomato or maculicola) as plants mature (in planta bacterial growth reduction of 10- to 100-fold). An ARR-like response also was observed in response to certain environmental conditions that accelerate Arabidopsis development. ARR occurs in the Arabidopsis mutants pad3-1, eds7-1, npr1-1, and etr1-4, suggesting that ARR is a distinct defense response, unlike the induced systemic resistance or systemic acquired resistance responses. However, three salicylic acid (SA) accumulation-deficient plant lines, NahG, sid1, and sid2, did not exhibit ARR. A heat-stable antibacterial activity was detected in intercellular washing fluids in response to Pst inoculation in wild-type ARR-competent plants but not in NAHG: These data suggest that the ability to accumulate SA is necessary for the ARR response and that SA may act as a signal for the production of the ARR-associated antimicrobial compound(s) and/or it may possess direct antibacterial activity against P. syringae.

publication date

  • February 2002