Home
Scholarly Works
Numerical simulation and seismic performance...
Journal article

Numerical simulation and seismic performance evaluation of buried pipelines rehabilitated with cured‐in‐place‐pipe liner under seismic wave propagation

Abstract

Summary The cured‐in‐place‐pipe (CIPP) liner technology involves installation of flexible polymeric composite liners coated with thermosetting resin to the inner surfaces of existing buried pipelines. This innovative technology provides an efficient, economic, and environmentally friendly alternative for rehabilitation of structurally compromised underground pipelines without expensive and disruptive excavation. However, the lack of analytical/numerical procedures to quantify the seismic performance of CIPP liner reinforced pipelines remains a barrier to the seismic design and rehabilitation of underground pipelines. This paper first develops an experimentally validated hysteretic model of ductile iron push‐on joints, reinforced with one particular type of CIPP liner under repeated axial loading. A numerical procedure is then proposed to systematically assess the seismic performance and fragility of straight buried pipelines incorporating push‐on joints and subjected to transient ground deformations. The numerical results indicate that CIPP liner‐reinforced pipelines exhibit favorable robust seismic performance with limited joint damage under high‐intensity transient ground deformations. Copyright © 2016 John Wiley & Sons, Ltd.

Authors

Zhong Z; Filiatrault A; Aref A

Journal

Earthquake Engineering & Structural Dynamics, Vol. 46, No. 5, pp. 811–829

Publisher

Wiley

Publication Date

April 25, 2017

DOI

10.1002/eqe.2832

ISSN

0098-8847

Labels

Fields of Research (FoR)

Contact the Experts team