Acute exposure to waterborne copper inhibits both the excretion and uptake of ammonia in freshwater rainbow trout (Oncorhynchus mykiss)
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
In freshwater fish, exposure to sub-lethal concentrations of waterborne copper (Cu) results in inhibitions of ammonia excretion (Jamm) and Na(+) uptake (J(Na)in), yet the mechanisms by which these occur are not fully understood. In the present study, rainbow trout (Oncorhynchus mykiss) fry exposed to 50μg/l Cu for 24h displayed a sustained 40% decrease in Jamm and a transient 60% decrease in J(Na)in. Previously, these effects have been attributed to inhibitions of gill Na(+)/K(+)-ATPase and/or carbonic anhydrase (CA) activities by Cu. Trout fry did not display significant reductions in the branchial activities of these enzymes or H(+)-ATPase over 24h Cu exposure. Recently, Rhesus (Rh) glycoproteins, bi-directional NH3 gas channels, have been implicated in the mechanism of Cu toxicity. Juvenile trout were exposed to nominal 0, 50, and 200μg/l Cu for 3-6h under control conditions (ammonia-free water) followed by 6h exposure to high environmental ammonia (HEA; 1.5mmol/l NH4HCO3). HEA led to significant ammonia uptake in control fish (0μg/l Cu), and exposure to 50 and 200μg/l Cu resulted in significant reductions of ammonia uptake during HEA exposure. This is the first evidence that Cu inhibits both the excretion and uptake of ammonia, implicating bi-directional Rh glycoproteins as a target for Cu toxicity. We propose a model whereby Rh blockade by Cu causes the sustained inhibition of Jamm and transient inhibition of J(Na)in, with H(+)-ATPase potentially aiding in J(Na)in recovery. More work is needed to elucidate the role of Rh proteins in sub-lethal Cu toxicity.