Target Tracking Formulation of the SVSF With Data Association Techniques Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • An important area of study for aerospace and electronic systems involves target tracking applications. To successfully track a target, state and parameter estimation strategies are used in conjunction with data association techniques. Even after 50 years, the Kalman filter (KF) remains the most popular and well-studied estimation strategy in the field. However, the KF adheres to a number of strict assumptions that leads to instabilities in some cases. The smooth variable structure filter (SVSF) is a relatively new method, which is becoming increasingly popular due to its robustness to disturbances and uncertainties. This paper presents a new formulation of the SVSF. The probabilistic and joint probabilistic data association techniques are combined with the SVSF and applied on multitarget tracking scenarios. In addition, a new covariance formulation of the SVSF is presented based on improving the estimation results of nonmeasured states. The results are compared and discussed with the popular KF method.

publication date

  • February 2017