Home
Scholarly Works
Identification of Drug Candidates to Suppress...
Journal article

Identification of Drug Candidates to Suppress Cigarette Smoke–induced Inflammation via Connectivity Map Analyses

Abstract

Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease, and to date, existing pharmacologic interventions have been ineffective at controlling inflammatory processes associated with the disease. To address this issue, we used the Connectivity Map (cMap) database to identify drug candidates with the potential to attenuate cigarette smoke-induced inflammation. We queried cMap using three independent in-house cohorts of healthy nonsmokers and smokers. Potential drug candidates were validated against four publicly available human datasets, as well as six independent datasets from cigarette smoke-exposed mice. Overall, these analyses yielded two potential drug candidates: kaempferol and bethanechol. Subsequently, the efficacy of each drug was validated in vivo in a model of cigarette smoke-induced inflammation. BALB/c mice were exposed to room air or cigarette smoke and treated with each of the two candidate drugs either prophylactically or therapeutically. We found that kaempferol, but not bethanechol, was able to reduce cigarette smoke-induced neutrophilia, both when administered prophylactically and when administered therapeutically. Mechanistically, kaempferol decreased expression of IL-1α and CXCL5 concentrations in the lung. Our data suggest that cMap analyses may serve as a useful tool to identify novel drug candidates against cigarette smoke-induced inflammation.

Authors

Vanderstocken G; Dvorkin-Gheva A; Shen P; Brandsma C-A; Obeidat M; Bossé Y; Hassell JA; Stampfli MR

Journal

American Journal of Respiratory Cell and Molecular Biology, Vol. 58, No. 6, pp. 727–735

Publisher

Oxford University Press (OUP)

Publication Date

June 1, 2018

DOI

10.1165/rcmb.2017-0202oc

ISSN

1044-1549

Contact the Experts team