The expanding host tree species spectrum ofCryptococcus gattiiandCryptococcus neoformansand their isolations from surrounding soil in India Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This study reports the widespread prevalence of Cryptococcus neoformans and Cryptococcus gattii in decayed wood inside trunk hollows of 14 species representing 12 families of trees and from soil near the base of various host trees from Delhi and several places in the Indian states of Uttar Pradesh, Haryana, Tamil Nadu and Chandigarh Union Territory. Of the 311 trees from which samples were obtained, 64 (20.5%) were found to contain strains of the C. neoformans species complex. The number of trees positive for C. neoformans var grubii (serotypeA) was 51 (16.3%), for C. gattii (serotype B) 24 (7.7%) and for both C. neoformans and C. gattii 11 (3.5%). The overall prevalence of C. neoformans species complex in decayed wood samples was 19.9% (111/556). There was no obvious correlation between the prevalence of these two yeast species and the species of host trees. The data on prevalence of C. gattii (24%) and C. neoformans (26%) in soil around the base of some host trees indicated that soil is another important ecologic niche for these two Cryptococcus species in India. Among our sampled tree species, eight and six were recorded for the first time as hosts for C. neoformans var grubii and C. gattii, respectively. A longitudinal surveillance of 8 host tree species over 0.7 to 2.5 years indicated long term colonization of Polyalthia longifolia, Mimusops elengi and Manilkara hexandra trees by C. gattii and/or C. neoformans. The mating type was determined for 153 of the isolates, including 98 strains of serotype A and 55 of serotype B and all proved to be mating type alpha (MAT alpha). Our observations document the rapidly expanding spectrum of host tree species for C. gattii and C. neoformans and indicate that decayed woods of many tree species are potentially suitable ecological niches for both pathogens.

authors

  • Randhawa, HS
  • Kowshik, T
  • Chowdhary, Anuradha
  • Preeti Sinha, K
  • Khan, ZU
  • Sun, Sheng
  • Xu, Jianping

publication date

  • January 2008