Ground-states for the liquid drop and TFDW models with long-range attraction Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We prove that both the liquid drop model in $\mathbb{R}^3$ with an attractive background nucleus and the Thomas-Fermi-Dirac-von Weizs\"{a}cker (TFDW) model attain their ground-states \emph{for all} masses as long as the external potential $V(x)$ in these models is of long range, that is, it decays slower than Newtonian (e.g., $V(x)\gg |x|^{-1}$ for large $|x|$.) For the TFDW model we adapt classical concentration-compactness arguments by Lions, whereas for the liquid drop model with background attraction we utilize a recent compactness result for sets of finite perimeter by Frank and Lieb.

publication date

  • October 2017