Home
Scholarly Works
Receptors and signaling pathway underlying...
Journal article

Receptors and signaling pathway underlying relaxations to isoprostanes in canine and porcine airway smooth muscle

Abstract

Using muscle bath techniques, we examined the inhibitory activities of several E- and F-ring isoprostanes in canine and porcine airway smooth muscle. 8-Isoprostaglandin E1 and 8-isoprostaglandin E2 (8-iso PGE2) reversed cholinergic tone in a concentration-dependent manner, whereas the F-ring isoprostanes were ineffective. Desensitization with 8-iso-PGE2 and PGE2 implicated isoprostane activity at the PGE2 receptor (EP). We found that the inhibitory E-ring isoprostane responses were significantly augmented by rolipram (a type IV phosphodiesterase inhibitor), while 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) had no effect, suggesting a role for cAMP in isoprostane-mediated relaxations. 8-Iso-PGE2 did not reverse KCl tone, suggesting that voltage-dependent Ca2+ influx and myosin light chain kinase are not suppressed by isoprostanes. Patch-clamp studies showed marked suppression of K+ currents by 8-iso-PGE2. We conclude that E-ring isoprostanes exert PGE2 receptor-directed, cAMP-dependent relaxations in canine and porcine airway smooth muscle. This activity is not dependent on K+ channel activation or the direct inhibition of voltage-operated Ca2+ influx or myosin light chain kinase.

Authors

Catalli A; Zhang D; Janssen LJ

Journal

American Journal of Physiology - Lung Cellular and Molecular Physiology, Vol. 283, No. 5, pp. l1151–l1159

Publisher

American Physiological Society

Publication Date

November 1, 2002

DOI

10.1152/ajplung.00038.2002

ISSN

1040-0605

Contact the Experts team