Home
Scholarly Works
Discrete Quantum Theories
Preprint

Discrete Quantum Theories

Abstract

We explore finite-field frameworks for quantum theory and quantum computation. The simplest theory, defined over unrestricted finite fields, is unnaturally strong. A second framework employs only finite fields with no solution to x^2+1=0, and thus permits an elegant complex representation of the extended field by adjoining i=\sqrt{-1}. Quantum theories over these fields recover much of the structure of conventional quantum theory except for the condition that vanishing inner products arise only from null states; unnaturally strong computational power may still occur. Finally, we are led to consider one more framework, with further restrictions on the finite fields, that recovers a local transitive order and a locally-consistent notion of inner product with a new notion of cardinal probability. In this framework, conventional quantum mechanics and quantum computation emerge locally (though not globally) as the size of the underlying field increases. Interestingly, the framework allows one to choose separate finite fields for system description and for measurement: the size of the first field quantifies the resources needed to describe the system and the size of the second quantifies the resources used by the observer. This resource-based perspective potentially provides insights into quantitative measures for actual computational power, the complexity of quantum system definition and evolution, and the independent question of the cost of the measurement process.

Authors

Hanson AJ; Ortiz G; Sabry A; Tai Y-T

Publication date

May 14, 2013

DOI

10.48550/arxiv.1305.3292

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team