Effects of neurotrophic factors and cell substrates on the differentiation of a sympathoadrenal progenitor cell line.
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The detailed spatial organization of cytoskeletal proteins in an immortalized sympathoadrenal precursor cell line, termed MAH, was studied when the cells were grown on cellular substrates and when treated with combinations of recombinant nerve growth factor, ciliary neurotrophic factor and basic fibroblast growth factor. In response to growth factors, MAH cells expressed appropriate distributions of phosphorylated and non-phosphorylated neurofilaments, and dendrite and axon specific microtubule associated proteins. Sequential stages of maturation and axon formation were identified as the MAH cells established neuronal polarity and developed into sympathetic-like neurons. Combinations of the growth factors initiated growth associated protein-43 expression in processes and promoted the MAH cells to acquire sympathetic-like neuron characteristics with long, thin processes that branched and often terminated in elaborate growth cones. When treated with the three trophic factors, 15% of the MAH cells differentiated into sympathetic-like neurons, in contrast to less than 10% when cultured with ciliary neurotrophic factor plus nerve growth factor. An enhanced cholinergic phenotype was evident in the MAH cells when grown with ciliary neurotrophic factor. MAH cells also expressed neuron-specific markers when co-cultured on enriched substrates of smooth muscle, fibroblasts or Schwann cells. The results indicate that this sympathoadrenal cell lineage, carrying the v-myc oncogene, can express appropriate cytoskeletal markers in the process of neuronal differentiation when induced by neurotrophic factors or by specific cellular conditions in vitro.