Ion movements in membrane vesicles: a new fluorescence method and application to smooth muscle Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A method is described for studying ion permeabilities of membrane vesicles based on the principle that when membrane permeability to H+ is very high, the H+ movement is determined by the membrane potential generated by the H+ movement. The rate of H+ movement under these conditions thus gives a measure of the rate of dissipation of this membrane potential by comovement of anions or countermovement of cations present. Thus, by studying the H+ efflux using an impermeant cation and different anions, the membrane permeability to the anions can be assessed. Similarly, the use of an impermeant anion allows the study of the permeation of various cations. H+ movement was followed across the membranes by monitoring a change in the fluorescence intensity of the pH-sensitive dye pyranine trapped inside the membranes. This method when tested using phosphatidylcholine liposomes yielded the expected results, i.e., permeability of the liposomal membrane was: Cl- greater than SO2-4 and K+ greater than Na+. A plasma membrane-enriched fraction loaded with pyranine was isolated from estrogen-dominant rat myometrium. The anion permeability characteristics of this membrane were studied using tetramethylammonium (TMA+) as the poorly permeant cation, and the cation permeability was studied using L-glutamate- as the poorly permeant anion. The anion permeabilities were D-glutamate- less than L-glutamate- less than glutarate2- less than Cl- less than or equal to SO2-4, and the cation permeabilities were TMA+ less than K+ less than Na+. It is hypothesized that the observed anomalously higher Na+ and SO2-4 movements may involve special mechanisms.

publication date

  • March 1985

has subject area