Home
Scholarly Works
β-Galactosidase-Based Colorimetric Paper Sensor...
Journal article

β-Galactosidase-Based Colorimetric Paper Sensor for Determination of Heavy Metals

Abstract

We demonstrate a novel approach for rapid, selective, and sensitive detection of heavy metals using a solid-phase bioactive lab-on-paper sensor that is inkjet printed with sol-gel entrapped reagents to allow colorimetric visualization of the enzymatic activity of β-galactosidase (B-GAL). The bioactive paper assay is able to detect a range of heavy metals, either alone or as mixtures, in as little as 10 min, with detection limits as follows: Hg(II) = 0.001 ppm; Ag(I) = 0.002 ppm, Cu(II) = 0.020 ppm; Cd(II) = 0.020 ppm; Pb(II) = 0.140 ppm; Cr(VI) = 0.150 ppm; Ni(II) = 0.230 ppm. The paper-based assay was immune to interferences from nontoxic metal ions such as Na(+) or K(+), could be used to detect heavy metals that were spiked into tap water or lake water, and provided quantitative data that was in agreement with values obtained by atomic absorption. With the incorporation of standard chromogenic metal sensing reagents into a multiplexed bioactive paper sensor, it was possible to identify specific metals in mixtures, albeit with much lower detection limits than were obtained with the enzymatic assay. The paper-based sensor should be valuable for rapid, on-site screening of trace levels of heavy metals in resource limited areas and developing countries.

Authors

Hossain SMZ; Brennan JD

Journal

Analytical Chemistry, Vol. 83, No. 22, pp. 8772–8778

Publisher

American Chemical Society (ACS)

Publication Date

November 15, 2011

DOI

10.1021/ac202290d

ISSN

0003-2700

Contact the Experts team