Novel dendrimer based polyurethanes for PEO incorporation Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A series of segmented polyurethanes based on methylene diisocyanate/poly (tetramethylene oxide) and chain extended with either ethylene diamine or butane diol in combination with a generation 2 polypropylenimine octaamine dendrimer were synthesized. For polymer synthesis, the dendrimers were protected with either t-boc or Fmoc groups and were incorporated into the polyurethane microstructure to permit further functionalization with biologically active groups. Following deprotection, the dendrimers were reacted with succinimidyl propionate polyethylene oxide (SPA-PEO) to improve the protein resistance of the polymers and to examine the potential of this technique for polymer functionalization. Different synthesis techniques were examined to optimize the incorporation of the PEO into the polymer microstructure. Incorporation of the dendrimers and the PEO were confirmed by NMR and FTIR. Gel permeation chromatography was used to examine the molecular weights of the various polyurethanes. The dendrimer incorporated polymers had significantly lower molecular weights than the ED or BDO chain extended controls, likely due to lower reactivity of the dendrimers as a result of steric factors. Following PEO reaction, the molecular weights of the resultant polymers were consistent with the levels of PEO incorporation noted by comparison of peak intensities in the NMR spectra. Due to the highly hydrophilic nature of the PEO, some migration to the polymer surface was expected. Water contact angles and XPS, used to characterize the surfaces, suggest that there was some PEO enrichment at the surface of the polymers. Adsorption of radiolabeled fibrinogen to the polymer surfaces was decreased by a factor of approximately 40% in some of the PEO incorporated polymers. There were also differences in the patterns of plasma protein adsorption on the various surfaces as evaluated by SDS PAGE and immunoblotting. Therefore, the use of dendrimers in biomaterials for incorporation of a large number of functional groups seems to be promising.

publication date

  • January 2002