A clear understanding of the mechanisms responsible for the protein-resistant nature of end-tethered poly(ethylene oxide) (PEO) surfaces remains elusive. A barrier to improved understanding is the fact that many of the factors involved (chain length, chain density, hydration, conformation, and distal chemistry) are inherently correlated. We hypothesize that, by comparing systems of variable but precisely known chain density, it should be possible to gain additional insight into the effects of the other factors. To evaluate this hypothesis, chain-end-thiolated PEOs were chemisorbed to gold-coated silicon wafers such that a range of chain densities was obtained. Three different PEOs were investigated: hydroxy-terminated chains of molecular weight 600 (600-OH), methoxy-terminated chains of molecular weight 750 (750-OCH3), and methoxy-terminated chains of molecular weight 2000 (2000-OCH3). In situ null ellipsometry was used to determine PEO chemisorption kinetics, ultimate PEO chain densities, protein adsorption kinetics, and ultimate protein adsorbed quantities. With this approach, it was possible to ascertain the effects of PEO distal chemistry (-OH, -OCH3), chain length, and layer hydration on protein adsorption. The data obtained suggested that properties related to chain density (conformational freedom, hydration) were the main determinants of protein resistance at chain densities up to a critical value of approximately 0.5 chain/nm2; at this value, protein adsorption was a minimum for the methoxy-terminated PEOs. For the hydroxyl-terminated PEO, adsorption leveled off at the critical value. Thus distal chemistry appears to be a major determinant of protein resistance at chain densities greater than the critical value.