Defect-mediated resonance shift of silicon-on-insulator racetrack resonators Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We present a study on the effects of inert ion implantation of Silicon-On-Insulator (SOI) racetrack resonators. Selective ion implantation was used to create deep-level defects within a portion of the resonator. The resonant wavelength and round-trip loss were deduced for a range of sequential post-implantation annealing temperatures from 100 to 300 °C. As the devices were annealed there was a concomitant change in the resonance wavelength, consistent with an increase in refractive index following implantation and recovery toward the pre-implanted value. A total shift in resonance wavelength of ~2.9 nm was achieved, equivalent to a 0.02 increase in refractive index. The excess loss upon implantation increased to 301 dB/cm and was reduced to 35 dB/cm following thermal annealing. In addition to providing valuable data for those incorporating defects within resonant structures, we suggest that these results present a method for permanent tuning (or trimming) of ring resonator characteristics.

publication date

  • June 20, 2011