abstract
- X-ray photoemission electron microscopy using synchrotron radiation illumination has been used to measure the spatial distributions of albumin on a phase-segregated polystyrene/poly(methyl methacrylate) (PS/PMMA) polymer thin film following adsorption from unbuffered, deionized aqueous solutions under a range of solution concentrations and exposure times. Chemical mapping of the albumin, PS, and PMMA shows that the distribution of albumin on different adsorption sites (PS, PMMA, and the interface between the PS and PMMA domains) changes depending on the concentration of the albumin solution and the exposure time. The preferred sites of absorption at low concentration and short exposure are the PS/PMMA interfaces. Albumin shows a stronger preference for the PS domains than the PMMA domains. The exposure-time dependence suggests that a dynamic equilibrium between albumin in solution and adsorbed on PS domains is established in a shorter time than is required for equilibrating albumin between the solution and the PMMA domains. The explanation of these preferences in terms of possible adsorption mechanisms is discussed.