Home
Scholarly Works
Urinary estrogen metabolites and prostate cancer:...
Conference

Urinary estrogen metabolites and prostate cancer: a case-control study and meta-analysis

Abstract

ObjectiveTo investigate prostate cancer (Pca) risk in relation to estrogen metabolism, expressed as urinary 2-hydroxyestrone (2-OHE1), 16α-hydroxyestrone (16α-OHE1) and 2-OHE1 to 16α-OHE1 ratio.MethodsWe conducted a case-control study within the Western New York Health Cohort Study (WNYHCS) from 1996 to 2001. From January 2003 through September 2004, we completed the re-call and follow-up of 1092 cohort participants. Cases (n = 26) and controls (n = 110) were matched on age, race and recruitment period according to a 1:4 ratio. We used the unconditional logistic regression to compute crude and adjusted odds ratios (OR) and 95% confident interval (CI) of Pca in relation to 2-OHE1, 16αOHE1 and 2-OHE1 to 16α-OHE1 by tertiles of urine concentrations (stored in a biorepository for an average of 4 years). We identified age, race, education and body mass index as covariates. We also conducted a systematic review of the literature which revealed no additional studies, but we pooled the results from this study with those from a previously conducted case-control study using the DerSimonian-Laird random effects method.ResultsWe observed a non-significant risk reduction in the highest tertile of 2-OHE1 (OR 0.72, 95% CI 0.25-2.10). Conversely, the odds in the highest tertile of 16α-OHE1 showed a non-significant risk increase (OR 1.76 95% CI 0.62-4.98). There was a suggestion of reduced Pca risk for men in the highest tertile of 2-OHE1 to 16α-OHE1 ratio (OR 0.56, 95% CI 0.19-1.68). The pooled estimates confirmed the association between an increased Pca risk and higher urinary levels of 16α-OHE1 (third vs. first tertile: OR 1.82, 95% CI 1.09-3.05) and the protective effect of a higher 2-OHE 1 to 16α-OHE1 ratio (third vs. first tertile: OR 0.53, 95% CI 0.31-0.90).ConclusionOur study and the pooled results provide evidence for a differential role of the estrogen hydroxylation pathway in Pca development and encourage further study.

Authors

Barba M; Yang L; Schünemann HJ; Sperati F; Grioni S; Stranges S; Westerlind KC; Blandino G; Gallucci M; Lauria R

Volume

28

Publisher

Springer Nature

Publication Date

November 18, 2009

DOI

10.1186/1756-9966-28-135

Conference proceedings

Journal of Experimental & Clinical Cancer Research

Issue

1

ISSN

0392-9078

Contact the Experts team