Mucosal Luminal Manipulation of T Cell Geography Switches on Protective Efficacy by Otherwise Ineffective Parenteral Genetic Immunization Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Genetic immunization holds great promise for future vaccination against mucosal infectious diseases. However, parenteral genetic immunization is ineffective in control of mucosal intracellular infections, and the underlying mechanisms have remained unclear. By using a model of parenteral i.m. genetic immunization and pulmonary tuberculosis (TB), we have investigated the mechanisms that determine the failure and success of parenteral genetic immunization. We found that lack of protection from pulmonary Mycobacterium tuberculosis (M.tb) challenge by i.m. immunization with a recombinant adenovirus-vectored tuberculosis vaccine was linked to the absence of M.tb Ag-specific T cells within the airway lumen before M.tb challenge despite potent T cell activation in the systemic compartments. Furthermore, pulmonary mycobacterial challenge failed to recruit CD8 T cells into the airway lumen of i.m. immunized mice. Such defect in T cell recruitment, intra-airway CTL, and immune protection was restored by creating acute inflammation in the airway with inflammatory agonists such as virus. However, the Ag-specific T cells recruited as such were not retained in the airway lumen, resulting in a loss of protection. In comparison, airway exposure to low doses of soluble M.tb Ags not only recruited but retained Ag-specific CD8 T cells in the airway lumen over time that provided robust protection against M.tb challenge. Thus, our study reveals that mucosal protection by parenteral immunization is critically determined by T cell geography, i.e., whether Ag-specific T cells are within or outside of the mucosal lumen and presents a feasible solution to empower parenteral immunization strategies against mucosal infectious diseases.

authors

publication date

  • February 15, 2007