Morphometric Analysis of Mouse Airways After Chronic Allergen Challenge Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Understanding the mechanisms of airway remodeling in chronic allergic conditions such as asthma is increasingly dependent on the use of animal models. Techniques for quantifying structural changes are required that are reproducible and responsive and that can be applied to different staining techniques in both human and animal airway tissues. Here, we characterize a morphometric technique to quantify changes in extracellular matrix and contractile tissue as two indices of airway remodeling in mice. Specific aims were to establish the optimum projection beneath the epithelium to assess remodeling changes and to determine whether such changes are reproducible within different areas of the lung. Finally, based on the variance within measurements, we calculated sample size requirements for research applications of this technique. BALB/c mice were sensitized to ovalbumin and studied after chronic allergen challenge. Lungs were formalin fixed and sectioned were then assayed for extracellular matrix or contractile tissue using morphometric/colorimetric techniques. In this model, the optimum projected distance to measure changes in extracellular matrix or contractile tissue was 20 micro m beneath the epithelium; projecting beyond this depth resulted in decreased ability to detect allergen-induced changes (signal) because of increased irrelevant staining of surrounding parenchymal tissue (noise). The technique was responsive, because an allergen-induced signal was detected in all airway sections and all lung regions studied (p < 0.05). The power of this analysis was such that allergen-induced changes can be reliably (>80% power) detected using 8 to 10 mice. This morphometric technique provides a valid and objective method to assess structural changes in the airways of mice after chronic allergen exposure.

publication date

  • September 2003