Nitric oxide inhibits human and canine pulmonary vascular tone via a postjunctional, nonelectromechanical, cGMP-dependent pathway
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We examined nitric oxide mediated regulation of pulmonary arterial and venous smooth muscle (PASM and PVSM, respectively): whether this inhibition is mediated via prejunctional receptors on adrenergic nerve endings; whether NO is neuronally derived; the relationship between degree of inhibition and vessel size; and identification of the signalling mechanisms involved. Canine pulmonary vascular tissues were generally quiescent, while human PASM exhibited spontaneous phasic activity. The nitric oxide (NO) synthesis inhibitor Nomega-nitro-L-arginine (L-NNA; 10(-4) M) increased tone and enhanced phasic activity. Electrical field stimulation (EFS) evoked contractions were markedly enhanced by L-NNA in an endothelium-dependent fashion, and antagonized by the NO donor S-nitroso-N-acetylpenicillamine (SNAP; 10(-7) to 10(-5) M). 8-Bromo-cGMP mimicked the effects of SNAP on basal tone and EFS contractions, while an inhibitor of soluble guanylate cyclase mimicked those of L-NNA. While mechanical responses to exogenously added norepinephrine (10(-9)-10(-4) M) were also enhanced by L-NNA and suppressed by SNAP, EFS-evoked excitatory junction potentials were unaffected by SNAP. We conclude that, in human and canine PASM and PVSM, there is a tonic generation of NO originating within the endothelium that does not mediate a prejunctional effect, but which acts postjunctionally to activate a cGMP-dependent pathway within the smooth muscle.