In vivoimaging of rat cortical bone porosity by synchrotron phase contrast micro computed tomography Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Cortical bone is a dynamic tissue which undergoes adaptive and pathological changes throughout life. Direct longitudinal tracking of this remodeling process holds great promise for improving our understanding of bone development, maintenance and senescence. The application of in vivo micro-computed tomography (micro-CT) has enabled longitudinal tracking of trabecular bone microarchitecture with commercially available scanners generally operating in the 10-20 µm voxel range with absorbed doses reported between 0.5 and 1 Gy. Imaging of cortical bone microarchitecture (porosity) requires higher resolution and thus in vivo imaging of these structures has not been achieved due to excessive radiation dose. In this study we tested the hypothesis that synchrotron propagation phase contrast micro-CT can enable in vivo imaging of cortical porosity in rats at doses comparable to those currently employed for trabecular bone imaging. Synchrotron imaging experiments were conducted at the Canadian Light Source using the bending magnet beamline of the BioMedical Imaging and Therapy (BMIT) facility. Protocol optimization (propagation distance, projection number) was conducted ex vivo on rat (Sprague-Dawley) forelimbs with dose determined by ion chamber and lithium fluoride crystal thermoluminescent dosimeters. Comparative ex vivo imaging was performed using laboratory in vivo scanning systems, identifying a range of doses between 1.2-3.6 Gy for common protocols. A final in vivo synchrotron protocol involving a 2.5 Gy dose was implemented with live rats. The resulting images demonstrated improved delineation of cortical porosity through the improved edge enhancement effect of phase contrast, opening the door to novel experimental studies involving the longitudinal tracking of remodeling.

authors

publication date

  • January 7, 2015