Toxicity of 6PPD-quinone to four freshwater invertebrate species
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The antioxidant N-(1,3-Dimethylbutyl)-N'-phenyl-p- phenylenediamine (6PPD) is used to protect the rubber in tires from oxidation, which extends the life of the tire. When oxidized, 6PPD is transformed into 6PPD-quinone (6PPDQ). 6PPDQ, along with other tire ingredients, can enter aquatic ecosystems through the transport of tire wear particles in runoff during a precipitation event. The mass mortality of coho salmon following precipitation events in urban areas lead to the discovery that 6PPDQ is the likely cause due to coho salmon's relatively high sensitivity to 6PPDQ. The assessment of 6PPDQ toxicity to other aquatic species has expanded, but it has focused on fish. This study investigated the toxicity of 6PPDQ to four freshwater invertebrate species, larval burrowing mayfly (Hexagenia spp.), juvenile cladoceran (Daphnia magna), file ramshorn snail embryo (Planorbella pilsbryi), and adult washboard mussel (Megalonaias nervosa). For all four species, the highest concentration of 6PPDQ tested did not result in significant mortality. This translated into the determination of the highest concentration that did not cause significant mortality (NOEC) for Hexagenia spp., D. magna, P. pilsbryi, and M. nervosa of 232.0, 42.0, 11.7, and 17.9 μg/L, respectively. The data from this study indicate that freshwater invertebrates are not as sensitive to 6PPDQ as some salmonid species (e.g., coho salmon Oncorhynchus kisutch). This study also analyzed 6PPDQ in road runoff from around the city of Guelph in Ontario, Canada. 6PPQ was detected in all samples but the concentration was two orders of magnitude lower than the NOECs for the four tested species of freshwater invertebrate.