Home
Scholarly Works
SOX2 Functions to Maintain Neural Progenitor...
Journal article

SOX2 Functions to Maintain Neural Progenitor Identity

Abstract

Neural progenitors of the vertebrate CNS are defined by generic cellular characteristics, including their pseudoepithelial morphology and their ability to divide and differentiate. SOXB1 transcription factors, including the three closely related genes Sox1, Sox2, and Sox3, universally mark neural progenitor and stem cells throughout the vertebrate CNS. We show here that constitutive expression of SOX2 inhibits neuronal differentiation and results in the maintenance of progenitor characteristics. Conversely, inhibition of SOX2 signaling results in the delamination of neural progenitor cells from the ventricular zone and exit from cell cycle, which is associated with a loss of progenitor markers and the onset of early neuronal differentiation markers. The phenotype elicited by inhibition of SOX2 signaling can be rescued by coexpression of SOX1, providing evidence for redundant SOXB1 function in CNS progenitors. Taken together, these data indicate that SOXB1 signaling is both necessary and sufficient to maintain panneural properties of neural progenitor cells.

Authors

Graham V; Khudyakov J; Ellis P; Pevny L

Journal

Neuron, Vol. 39, No. 5, pp. 749–765

Publisher

Elsevier

Publication Date

August 28, 2003

DOI

10.1016/s0896-6273(03)00497-5

ISSN

0896-6273

Contact the Experts team