Free-breathing Pulmonary 1H and Hyperpolarized 3He MRI
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
RATIONALE AND OBJECTIVES: In this proof-of-concept demonstration, we aimed to quantitatively and qualitatively compare pulmonary ventilation abnormalities derived from Fourier decomposition of free-breathing (1)H magnetic resonance imaging (FDMRI) to hyperpolarized (3)He MRI in subjects with chronic obstructive pulmonary disease (COPD) and bronchiectasis. MATERIALS AND METHODS: All subjects provided written informed consent to a protocol approved by a local research ethics board and Health, Canada, and they underwent MRI, computed tomography (CT), spirometry, and plethysmography during a single 2-hour visit. Semiautomated segmentation was used to generate ventilation defect measurements derived from FDMRI and (3)He MRI, and these were compared using analysis of variance and Pearson correlations. RESULTS: Twenty-six subjects were evaluated including 12 COPD subjects (67 ± 9 years) and 14 bronchiectasis subjects (70 ± 11 years). For COPD subjects, FDMRI and (3)He MRI ventilation defect percent (VDP) was 7 ± 6% and 24 ± 14%, respectively (P < .001; bias = -16 ± 9%). In COPD subjects, FDMRI was significantly correlated with (3)He MRI VDP (r = .88; P = .0001), (3)He MRI apparent diffusion coefficient (r = .71; P < .05), airways resistance (r = .60; P < .05), and RA950 (r = .80; P < .01). In subjects with bronchiectasis, FDMRI VDP (5 ± 3%) and (3)He MRI VDP (18 ± 9%) were significantly different (P < .001) and not correlated (P > .05). The Dice similarity coefficient (DSC) for FDMRI and (3)He MRI ventilation was 86 ± 7% for COPD and 86 ± 4% for bronchiectasis subjects (P > .05); the DSC for FDMRI ventilation defects and CT RA950 was 19 ± 20% in COPD and 2 ± 3% in bronchiectasis subjects (P < .01). CONCLUSIONS: FDMRI and (3)He MRI VDP were strongly related in COPD but not in bronchiectasis subjects. In COPD only, FDMRI ventilation defects were spatially related with (3)He ventilation defects and emphysema.