Home
Scholarly Works
The ontogeny of aerobic and diving capacity in the...
Journal article

The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals

Abstract

Our objective was to determine the ontogenetic changes in the skeletal muscles of Weddell seals that transform a non-diving pup into an elite diving adult. Muscle biopsies were collected from pups, juveniles and adults and analyzed for changes in fiber type, mitochondrial density, myoglobin concentrations and aerobic, lipolytic and anaerobic enzyme activities. The fiber type results demonstrated a decrease in slow-twitch oxidative (Type I) fibers and a significant increase in fast-twitch oxidative (Type IIA) fibers as the animals mature. In addition, the volume density of mitochondria and the activity of lipolytic enzymes significantly decreased as the seals matured. To our knowledge, this is the first quantitative account describing a decrease in aerobic fibers shifting towards an increase in fast-twitch oxidative fibers with a significant decrease in mitochondrial density as animals mature. These differences in the muscle physiology of Weddell seals are potentially due to their three very distinct stages of life history: non-diving pup, novice diving juvenile, and elite deep diving adult. During the first few weeks of life, pups are a non-diving terrestrial mammal that must rely on lanugo (natal fur) for thermoregulation in the harsh conditions of Antarctica. The increased aerobic capacity of pups, associated with increased mitochondrial volumes, acts to provide additional thermogenesis. As these future elite divers mature, their skeletal muscles transform to a more sedentary state in order to maintain the low levels of aerobic metabolism associated with long-duration diving.

Authors

Kanatous SB; Hawke TJ; Trumble SJ; Pearson LE; Watson RR; Garry DJ; Williams TM; Davis RW

Journal

Journal of Experimental Biology, Vol. 211, No. 16, pp. 2559–2565

Publisher

The Company of Biologists

Publication Date

August 15, 2008

DOI

10.1242/jeb.018119

ISSN

0022-0949

Contact the Experts team