Calibrations and Performance of the Airborne Cloud Extinction Probe Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractA new airborne instrument that measures extinction coefficient β in clouds and precipitation has been designed by Environment Canada. The cloud extinction probe (CEP) utilizes the transmissometric method, which is based on direct measurement of light attenuation between the transmitter and receiver. Transmissometers are known to be susceptible to forward scattering, which becomes increasingly significant as the particle size increases. A new technique for calibrating transmissometers was developed here in order to determine the response function of the probe. Laboratory calibrations show that CEP-derived β may be underestimated by a factor of 2 for circular particles with diameters greater than 100 μm. Results for spherical particles are in good agreement with theoretical predictions. For nonspherical particles, however, estimates of β can deviate significantly from those derived for spheres that have the same projected area. For in situ observations of ice particles, CEP measurements often deviate significantly from theoretical calculations, whereas for small cloud droplets agreement is good. It is hypothesized that CEP-derived estimates of β for ice clouds depend much on variations in the scattering phase function that arise from details in ice crystal surface roughness and fine crystal structure. This would complicate greatly the estimation of β from transmissometers for ice-bearing clouds.

publication date

  • February 1, 2014