Water balance of a burned and unburned forested boreal peatland Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractWe examined the water balance of a forested ombrotrophic peatland and adjacent burned peatland in the boreal plain of western Canada over a 3‐year period. Complete combustion of foliage and fine branches dramatically increased shortwave radiation inputs to the peat surface while halting all tree transpiration at the burned site. End‐of‐winter snowpack was 7–25% higher at the burned site likely due to decreased ablation from the tree canopy at the unburned site. Shrub regrowth at the burned site was rapid post‐fire, and shading by the shrub canopy in the burned site approached that of the unburned site within 3 years after fire. Site‐averaged surface resistance to evaporation was not different between sites, though surface resistance in hollows was lower in the burned site. Water loss at both burned and unburned sites is largely driven by surface evaporative losses. Evaporation at the burned site marginally exceeded the sum of pre‐fire transpiration and interception at the unburned site, suggesting that evapotranspiration during the growing season was 20–40 mm greater at the burned peatland. Although the net change in water storage during the growing season was largely unchanged by fire, the lack of low‐density surface peat in the burned site appears to have decreased specific yield, leading to greater water table decline at the burned site despite similar net change in storage. Copyright © 2013 John Wiley & Sons, Ltd.

publication date

  • November 29, 2014