Hubble Space Telescope scale 3D simulations of MHD disc winds: a rotating two-component jet structure Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We present the results of large scale, three-dimensional magneto-hydrodynamics simulations of disc-winds for different initial magnetic field configurations. The jets are followed from the source to 90 AU scale, which covers several pixels of HST images of nearby protostellar jets. Our simulations show that jets are heated along their length by many shocks. We compute the emission lines that are produced, and find excellent agreement with observations. The jet width is found to be between 20 and 30 AU while the maximum velocities perpendicular to the jet is found to be up to above 100 km/s. The initially less open magnetic field configuration simulations results in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. These simulations preserve the underlying Keplerian rotation profile of the inner jet to large distances from the source. However, for the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disc (counter-rotating). The RW Aur jet is narrow, indicating that the disc field in that case is very open meaning the jet can contain a counter-rotating component that we suggests explains why observations of rotation in this jet has given confusing results. Thus magnetized disc winds from underlying Keplerian discs can develop rotation profiles far down the jet that are not Keplerian.

publication date

  • February 1, 2015