Maternal transfer of bisphenol A impacts the ontogeny of cortisol stress response in rainbow trout Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Bisphenol A (BPA) is widespread in the aquatic environment, and early life-stage exposure to this chemical affects growth and development in fish. We tested the hypothesis that BPA accumulation in eggs, mimicking maternal transfer, impacts the development and function of the hypothalamus-pituitary-interrenal (HPI) axis in rainbow trout (Oncorhynchus mykiss). To mimic maternal transfer, oocytes were loaded with 0 (control), 1, 4 and 40ng BPA embryo(-1). We measured the temporal changes in whole body cortisol content, transcript levels of corticosteroidogenesis-related genes and glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) protein expressions during early development. In addition, trout larvae were subjected to an acute stressor at key developmental stages (at hatch, just prior to first feed and post hatch) and whole body cortisol levels measured to assess the functional integrity of the HPI axis. The developmental profile of whole body cortisol content was altered in the 1 and 40ng BPA groups compared to the control group. Also, the two key rate-limiting steps in steroidogenesis, the steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage (P450scc) enzyme transcript levels were disrupted in the larvae originating from BPA accumulated eggs prior to first feed. Whole body GR and MR protein expressions were higher in the 40ng BPA group compared to other groups prior to first feed. Stressor-induced elevation in whole body cortisol levels were evident at 65 days post-fertilization (dpf) and later, but not at 42 dpf in trout larvae. This cortisol response to a stressor exposure was attenuated in the 4 and 40ng BPA groups at 65 dpf, but not at 140 dpf. Together, accumulation of BPA in eggs, mimicking maternal transfer of this chemical, disrupts the ontogeny of cortisol stress response in trout larvae and may compromise the target tissue responsiveness to cortisol stimulation during early development.

publication date

  • November 2015

has subject area