Methods for Estimating Surface Water Storage Changes and Their Evaluations Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract Developing effective methods for estimating regional-scale surface water storage change (ΔSW) has become increasingly important for water resources studies and environmental impact assessment. Three methods for estimating monthly ΔSW are proposed in this study, of which one is based on land surface runoff and two that use water body water budgets. Water areas observed by Landsat satellites for Canada’s entire landmass are used for evaluation of the results. The surface runoff method achieved the least satisfactory results, with large errors in the cold season or dry regions. The two water-budget methods demonstrated significant improvements, particularly when water area dynamics is considered in the estimation of the water body water budget. The three methods performed consistently across different climate regions in the country and showed better correlations with observations over wet climate regions than over dry regions with poorly connected hydrological system. The results also showed the impact of glacier and permanent snow melts over the Rocky Mountains on basin-scale surface water dynamics. The methods and outputs from this study can be used for calibrating and validating hydrological and climate models, assessing climate change and human disturbance impacts on regional water resources, and filling the ΔSW data gaps in GRACE-based total water storage decompositions studies. Significance Statement The purpose of this study is to develop and evaluate methods for estimating regional-scale surface water storage change. This is important because information on surface water dynamics is limited for water resources studies and environmental impact assessment. Our study makes available two new methods which significantly improve on surface water storage estimation from the traditional runoff model. A guide on controls of surface water dynamics is provided for regions under various hydroclimate and physiographic–hydraulic conditions and reveals the influence of glacier melt on surface water variations.

publication date

  • March 2023