Effects of Moderate Exercise on Cortical Resilience Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • OBJECTIVE: The beneficial effects of exercise on the brain regions that support cognitive control and memory are well documented. However, examination of the capacity of acute exercise to promote cortical resilience-the ability to recover from temporary pertubation-has been largely unexplored. The present study sought to determine whether single session of moderate-intensity aerobic exercise can accelerate recovery of inhibitory control centers in the dorsolateral prefrontal cortex after transient perturbation via continuous theta burst stimulation (cTBS). METHODS: In a within-participants experimental design, 28 female participants aged 18 to 26 years (mean [standard deviation] = 20.32 [1.79] years) completed a session each of moderate-intensity and very light-intensity exercise, in a randomized order. Before each exercise session, participants received active cTBS to the left dorsolateral prefrontal cortex. A Stroop task was used to quantify both the initial perturbation and subsequent recovery effects on inhibitory control. RESULTS: Results revealed a significant exercise condition (moderate-intensity exercise, very light-intensity exercise) by time (prestimulation, poststimulation, postexercise) interaction (F(2,52) = 5.93, p = .005, d = 0.38). Specifically, the proportion of the cTBS-induced decrement in inhibition restored at 40 minutes postexercise was significantly higher after a bout of moderate-intensity exercise (101.26%) compared with very light-intensity exercise (18.36%; t(27) = -2.17, p = .039, d = -.57, 95% confidence interval = -161.40 to -4.40). CONCLUSION: These findings support the hypothesis that exercise promotes cortical resilience, specifically in relation to the brain regions that support inhibitory control. The resilience-promoting effects of exercise have empirical and theoretical implications for how we conceptualize the neuroprotective effects of exercise.

publication date

  • June 2016