Calcium homeostasis in larval and adultDrosophila melanogaster Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Calcium homeostasis in Drosophila melanogaster was examined in response to the challenges imposed by growth, reproduction and variations in dietary calcium content. Turnover time for calcium, calculated as the time for (45)Ca(2+)to accumulate to half the steady state value of 3.46 nmol/fly, was 3.3 days. Although larvae weighed 2x as much as adults, they contained 3-4x as much calcium. Anterior Malpighian tubules (Mts) contain much more calcium than posterior Mts, accounting for 25-30% of the calcium content of the whole fly. In response to a 6.2-fold increase in dietary calcium level, calcium content of whole flies increased only 10%. Hemolymph calcium concentration ( approximately 0.5 mM) was similar in males and females and in animals raised on diets differing in calcium content. Fluid secretion rate, secreted fluid calcium concentration, and transepithelial calcium flux in tubules isolated from flies raised on high and low calcium diets did not differ significantly. Malpighian tubules secrete calcium at rates sufficient to eliminate whole body calcium content in 0.5 and 3 days for tubules secreting fluid at basal and maximal rates, respectively. It is suggested that flies absorb high quantities of calcium from the diet and maintain homeostasis through the combined effects of elimination of calcium in fluid secreted by the Malpighian tubules and the sequestration of calcium in granules, especially within the distal segment of the anterior pair of Malpighian tubules.

publication date

  • May 2000