Development of a size-restricted pIX-deleted helper virus for amplification of helper-dependent adenovirus vectors Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Helper-dependent adenovirus vectors (hdAd), which are deleted of all viral protein-coding sequences, can mediate long-term expression of a therapeutic transgene and lead to life-long, phenotypic correction in animal models of genetic disease. Here, we describe a new system for the generation of hdAd, which utilizes the DNA size restrictions imposed on an Ad virion deleted of protein IX (pIX): such virions are reported to package up to only approximately 35 kb of viral DNA. A pIX(-) helper virus (approximately 37.3 kb) was easily grown on complementing 293pIX cells. Upon infection of noncomplementing cells, this virus was not capable of forming infectious virions, but provided replicative and packaging functions for propagation of a 30-kb hdAd. The pIX(-) helper virus was effective in amplifying an hdAd and, in combination with Cre-mediated excision in the viral-packaging signal, resulted in a 1000-fold reduction in helper virus contamination in hdAd stocks compared to Cre/lox alone, as determined by plaque assay. However, through slot blot analysis of DNA isolated from virions, we determined that the ratio of hdAd to helper DNA was 500:1, similar to the ratio observed when using Cre/lox alone. Surprisingly, a large amount of the 37.3-kb helper DNA was being packaged into the pIX-deleted virions, but these virions were incapable of establishing productive infections in plaque assays, for reasons which are still unclear. Nevertheless, the pIX(-) hdAd generated in this system infected cells and expressed a transgene at levels similar to those obtained with a pIX(+) hdAd. These data suggest that, although further studies are necessary to characterize the nature of the defective helper virions formed in this system, deletion of pIX from the helper virus genome does provide an effective method to prevent recovery of functional helper virus during hdAd amplification.

publication date

  • March 2004