abstract
- The osseointegration of metallic implants is reliant on a cascade of molecular interactions and the delivery of macromolecules to the implant environment that occurs before substantial bone formation. Early blood vessel formation is a requisite first step in the healing timeline for osteoid formation, where vascular development can be accelerated as a result of controlled hypoxic conditioning. In this study, alginate-derived xerogel films containing varied concentrations of disodium succinate salt which has been shown to induce pseudohypoxia (short-term hypoxic effects while maintaining an oxygenated environment) were developed. Xerogels were characterized for their morphology, succinate release over time and cellular response with osteoblast-mimicking Saos-2 and human umbilical vein endothelial cells (HUVEC). Scanning electron microscopy revealed a multiscale topography that may favour osseointegration and alamarBlue assays indicated no cytotoxic effects during in vitro proliferation of Saos-2 cells. pH measurements of eluted succinate reach 95 % of peak value after 7 h of immersion for all gels containing 10 mM of succinate or less, and 60 % within the first 40 min. In vitro exposure of HUVECs to succinate-conditioned media increased the net concentration of total proteins measured by bicinchoninic acid (BCA) assay and maintains stable vascular endothelial growth factor (VEGF) and extracellular platelet-derived growth factor (PDGF) for vessel formation through comparison of enzyme-linked immunosorbent assays (ELISAs) of the culture media and cell lysate. Tube formation assays also showed a sustained increase in tube diameter across the first 48 h of HUVEC culture when succinate concentrations of 1 and 10 μM in the xerogel. Overall, the succinate-alginate films serve as a prospective organic coating for bone-interfacing implant materials which may induce temporary pseudohypoxic conditions favourable for early angiogenesis and bone regeneration in vivo at succinate concentrations of 1 or 10 μM.